

Reyrolle Protection Devices

Answers for energy

7SR224 Argus

Recloser Controller

Description

The 7SR224 Recloser Controller is one of a range of new generation devices providing comprehensive directional and non-directional overcurrent protection integrated with associated protection elements and Autoreclose scheme logic. It builds on the years of in-service experience gained from the Argus family of products. The Controller provides independent Phase Fault, Earth Fault and Sensitive Earth Fault autoreclose sequences. Each sequence can be user set to any mix of Instantaneous (fast time current characteristic (TCC)) or Delayed TCC protection and independent Reclose (Dead) times. The Controller also provides a separate Autoreclose sequence for external protection. Functions included are: -

Control, monitoring, instruments, Voltage - Sag & Swell, together with integrated input and output logic, data logging & fault report functions.

Controllers are housed in 4U high, size E10 or E12 cases.

Function Overview

Standard Functionality

25 27/59 27Sag/59Swell 37 46BC 46NPS 47NPS 49 50BF 51c 51V 59N 60CTS 60VTS 64H 67/50 64H 67/50 67/51 67/51G 67/51G 67/50SEF	Synchronising Under/Overvoltage SARFIx Power Quality Counters Undercurrent Broken Conductor / Load Unbalance Negative Phase Sequence Overcurrent Negative Phase Sequence Overvoltage Thermal Overload –Pole Segregated Circuit Breaker Fail Cold Load Pickup Voltage Controlled Overcurrent Neutral Voltage Displacement CT Supervision VT Supervision High Impedance Restricted Earth Fault (EF) Directional Instantaneous Phase Fault O/C Directional Instantaneous Earth Fault O/C Directional Time Delayed Earth Fault O/C Directional Instantaneous Sensitive EF	
67/50	Directional Instantaneous Phase Fault O/C	
67/50G	Directional Instantaneous Earth Fault O/C	
	Directional Time Delayed Earth Fault O/C	
67/51SEF 74TCS	Directional Time Delayed Sensitive EF Trip Circuit Supervision H4/5/6/7 schemes Autoreclose	
79 81 81HBL2	Under/Over Frequency Inrush Restraint	
86	Lockout	
User Programmable Logic, via HMI 8 Settings Groups - Password access - 2 levels Self Monitoring		

Optional Functionality

Loop Automation by Loss of Voltage Single /Triple Pole Autoreclose for Three Single Pole Circuit Breakers

User Interface

20 character x 4 line backlit LCD Menu navigation keys 3 fixed function LEDs 8 or 16 Programmable Tri-colour LEDs 12 Programmable Function Keys with Tri-colour LEDs

Monitoring Functions

Fault Data Mode - displays Date & Time, Type of fault and currents & voltages for each of last 10 faults. Favourite (Default) meters - User selectable from:-Currents - Primary, Secondary, xIn, Earth/SEF, Sequence Components and 2nd Harmonic, Voltages – Primary, Secondary xVn, Ph-Ph and Ph-n, Sequence Components, Calculated Earth Voltage, Neutral Voltage Displacement (Vx) Voltage. Frequency Power - MW, MVar, MVA, Power Factor Energy – Export & Import - MWh, MVarh, Direction - Load Flow Indication Thermal capacity - % Autoreclose - status and shot number CB Maintenance: 2 Independent Trip Counters, **Frequent Operations Counter** Lockout handle operations counter I²t summation for contact wear General alarms Battery Condition monitoring and automatic cyclical test. Power guality – 27 Sag and 59 Swell (Per pole Counters for SIARFIX, SMARFIX, STARFIX and Interruption Events,) Binary Input status indication Binary Output status indication Virtual internal status indication **Communications Meters** Miscellaneous Meters, Date, Time, Waveform, Fault, Event & Data Log records-counters.

Demand Monitoring

Data Storage & Communications

Standard Communications Ports

Communication access to relay functionality is via a front USB port for local PC connection or rear electrical RS485 port for remote connection

Optional Communications Ports

2 Rear ST fibre optic ports (2 x Tx/Rx) + IRIG-B port 1 additional Rear RS485 port + IRIG-B port 1 additional Rear RS232 port + IRIG-B port

Protocols

IEC60870-5-103, Modbus RTU and DNP 3.0 or IEC60870-5-101 protocols – User selectable with programmable data points

Data

Event records Fault records Waveform records Measurands Commands Time synchronism Viewing and changing settings

Description of Functionality

With reference to figure 7: 'Function Diagram'.

25 Synchronising

Synchronising is used with three pole Manual Closing and Autoreclose operations to ensure that voltages are within safe limits before allowing the close operation to proceed. The 7SR224 provides settings for voltages, phase and frequency difference for Check Synchronising as well as System Synchronising and Close on Zero phase difference for automatic selection following detection of a split system. Automatic Synchronising bypass is also available to allow closure to energise a dead feeder or busbar.

27/59 Under/over Voltage

4 elements which can be set independently as Under or overvoltage. Each element has settings for pickup level and Definite Time Lag (DTL) delays, operates if voltage 'exceeds' setting for duration of delay, Typically applied in load shedding schemes.

37 Undercurrent

2 element with settings for pickup level and Definite Time Lag (DTL) delays. Each operates if current falls below its setting for duration of its delay.

46BC Broken Conductor

Each element has settings for pickup level and DTL delay. With the circuit breaker closed, if the NPS / PPS current ratio is above setting this could be due to a broken conductor.

46NPS Negative Phase Sequence Overcurrent

Two elements, one DTL and one IDMT, with user settings for pickup levels and delays. NPS Current elements can be used to detect unbalances on the system. The negative sequence phase component of current is derived from the three phase currents. It is a measure of the quantity of unbalanced current on the system.

47NPS Negative Phase Sequence OverVoltage

Two DTL elements with independent user settings for NPS overvoltage pickup level and delays. NPS Voltage elements can be used to detect unbalances on the system. The negative sequence phase component of voltage is derived from the three phase voltages. It is a measure of the quantity of unbalanced voltage on the system.

49 Thermal Overload

The thermal algorithm calculates the thermal state of each pole from the measured currents and can be applied to lines, cables and transformers; operates if the user set thermal overload is exceeded. Capacity Alarm operates if a user set percentage of overload is reached.

50BF Circuit Breaker Fail

The circuit breaker fail function may be triggered from an internal trip signal or from a binary input. All measured currents can be monitored following a trip signal and an output is issued if any current is still detected after a specified time interval. This can be used to re-trip the CB or to back-trip an upstream CB. A second back-trip time delay is provided to enable another stage to be utilized if required.

59N Neutral Overvoltage

Two elements, one DTL and one IDMTL, have user settings for pickup level and delays. These will operate if the Neutral voltage exceeds the setting for duration of delay. Neutral overvoltage can be used to detect earth faults in high impedance earthed or isolated systems.

67/50 Phase Fault Elements

Provide Directional Instantaneous or Definite Time (DTL) Overcurrent protection, with independent settings for pickup current and time-delay. Four elements are provided. Elements can be Inrush-inhibited

67/51 Phase Fault Elements

Provide Directional - Inverse Definite Time Overcurrent protection, TCC/DTL with independent settings for pickup current, TCC and minimum/follower time-delay. Four elements are provided.

User can select the TCC from standard IEC/ANSI or Legacy Characteristics e.g. 101 (A) etc. Reset TCC can be user set to either DTL or shaped, to integrate grading with electromechanical or other protection devices.

Earth Fault/Sensitive Earth Fault

The Earth Fault current is measured directly via a dedicated current analogue input. This input is used for both Earth Fault and Sensitive Earth Fault elements.

67/50G Earth Fault

Provide Directional Instantaneous or Definite Time (DTL) earth fault protection, with independent settings for pickup current and time-delay. Four elements are provided. Elements can be Inrush-inhibited.

67/51G Earth Fault

Provide Directional - Inverse Definite Time earth fault protection, TCC/DTL with independent settings for pickup current, TCC and minimum/follower time-delay. Four elements are provided. User can select the TCC from standard IEC/ANSI or Legacy Characteristics e.g. 101 (A) etc. Reset TCC can be user set to either DTL or shaped, to integrate grading with electromechanical or other protection devices.

67/50SEF Sensitive Earth Fault

Provide Directional Instantaneous or Definite Time (DTL) earth fault protection, with independent settings for pickup current and time-delay. Four elements are provided. Elements can be Inrush-inhibited

67/51SEF Sensitive Earth Fault

Provide Directional Instantaneous or Definite Time (DTL) earth fault protection, with independent settings for pickup current and time-delay.

Four elements are provided.

Elements can be Inrush-inhibited

User can select the TCC from standard IEC/ANSI or Legacy Characteristics e.g. 101 (A) etc. Reset TCC can be user set to either DTL or shaped, to integrate grading with electromechanical or other protection devices.

67 Directional Control

Phase Fault, Earth Fault and Sensitive Earth Fault elements can be directionalised. Each element can be user set to Forward, Reverse, or Non-directional.

Where multiple elements are provided two could be set for Forward and two for Reverse, thus providing Bi-Directional Tri-state protection is a single device.

Phase Fault elements are polarised from the calculated quadrature voltage i.e. la~Vbc, lb~Vca & lc~Vab. Earth Fault/SEF elements are polarized from internally calculated Zero sequence Voltage, i.e. lo~Vo.

51c Cold Load

When a circuit breaker is closed onto a 'cold' load, i.e. one that has not been powered for a prolonged period, this can impose a higher than normal load-current demand on the system which could exceed 'Normal settings'. These conditions can exist for an extended period and must not be interpreted as a fault. To allow optimum setting levels to be applied for normal operation, Cold Load causes the 67/51 elements to change to 67/51c settings i.e. Setting/TCC/Time Multiplier /Follower delay times, for a limited period. Cold Load resets and returns to 'Normal settings' when either the circuit breaker has been closed for a User set period, or if the current has fallen to below a set level for a set time and it is safe to return.

51V Voltage Controlled OverCurrent

Element has settings for UnderVoltage pickup level and operates if voltage falls below setting. On Pick-up this element applies the set 51v Multiplier to the pickup setting of the 67/51 phase fault elements.

60CTS CT Supervision

The CT Supervision considers the presence of negative phase sequence current, without an equivalent level of negative phase sequence voltage, for a user set time as a CT failure. Element has user operate and delay settings.

60VTS VT Supervision

The VT Supervision uses a combination of negative phase sequence voltage and negative phase sequence current to detect a VT fuse failure. This condition may be alarmed or used to inhibit voltage dependent functions. Element has user operate and delay settings.

64H Restricted Earth Fault - scheme

The measured earth fault input may be used in a 64H highimpedance, restricted earth fault scheme. The required external series stabilising resistor and shunt non-linear Varistor can be supplied.

74TC Trip Circuit Supervision

Up to three trip circuits can be monitored using binary inputs connected in H4/H5/H6 or H7 schemes. Trip circuit failure raises an HMI alarm and output(s).

79 Auto Reclose

The controller provides independent Phase Fault, Earth Fault and Sensitive Earth Fault sequences. They can be set for up to 4 Shots i.e. 5 Trips + 4 Reclose attempts to Lockout. These sequences can be user set to any configuration of Instantaneous (fast TCC) or Delayed TCC protection, with independent Reclose (Dead) times. As the user defines which elements are Instantaneous, the combination of TCC1 plus 50 High set elements & TCC2 plus 50 High Set elements, provides the user with full flexibility. It enables the optimisation of the protection characteristics, which will be applied at each point in the protection sequence. Limits can be set by the user on the number of Delayed Trips to Lockout or High set trips to Lockout. The External Protection Auto Reclose sequence allows AutoReclose to be provided for a separate high speed Protection device with options for Blocking External Trips to allow Overcurrent grading to take place.

Single/Triple Auto Reclose

Additional optional functionality is available to provide tripping, auto reclose and control of three single pole Reclosers located together and controlled by a single 7SR224 device. The facility to operate each of the three phases independently for systems where single phase loads are connected is common in some countries. The 7SR224 provides flexible schemes which are used to provide single and three pole trip and reclose operations depending on the fault type detected.

Loss of Voltage LOV Automation

Additional optional functionality is available to provide control of Normally Open Points (NOP) and other Reclosers in the distribution network to provide an automation sequence of load restoration following a persistent fault. The sequence is started by the loss of voltage detection, for an extended period of time, following a complete but unsuccessful auto reclose sequence, which has caused Lockout of a Recloser at any point in the network.

81 Under/Over Frequency

Each of the 4 elements has settings for pickup level, drop-off level and Definite Time Lag (DTL) delays. This function operates if frequency 'exceeds' setting for duration of delay. Typically applied in load shedding schemes.

81HBL2 Second Harmonic Block

Where second harmonic current is detected i.e. during transformer energisation the user selected elements can be blocked

27/59 Voltage Sag/Swell

Power System Utilities use SARFI indices of Voltage Sag and Swell, which express the magnitude and duration of Sag and Swell variations occurring on their systems. These indices are based on the 'ride-through' capability of the customer's plant and are usually expressed in terms of the number of a specific class (index) of r.m.s. variation per customer per specified period.

These elements provide the raw data in the form of counters that display the total count of each type of index value. Sags have a greater impact on plant performance than Swells. Disturbances are classified according to their magnitude and duration, the limits can be User set for SIARFI, SMARFI & STARFI. Breaks above 60s duration are Interruptions. Counters for each are provided per pole.

Programmable User Logic

Each Protection element output can be used for Alarm & Indication and/or tripping.

User can freely map any protection element output to any Binary Output(s); and any Binary Input(s) to any Function Inhibit(s), Binary Output, LED's and/or internal Virtual signal points. User can also enter up to 16 Equations via the HMI, defining User scheme-logic using standard Boolean Logic e.g. ()/AND/OR/NOT/XOR, to combine BI, other Equations, Function Keys, LEDs, BO, and internal Virtual signal points. Each equation has PU/DO Time Delays and a Target Counter. Each Equation appears in the Output matrix and can be freely mapped to LEDs/BO.

Circuit Breaker Maintenance

Four circuit breaker trip counters are provided:-

Total Trip Count increments upon each trip command issued to give data for maintenance.

Delta Trip Count is an additional counter which can be reset independently of the Total Trip Counter and counts the number of operations since the last reset.

Frequent Operations Counter monitors the number of trip operations in a rolling window period of one hour and operates to stop cyclical sequences if the set number is exceeded.

An I²t summation Counter provides a means monitoring contact wear indicating the total energy interrupted by the circuit breaker contacts.

Each counter has a user set target operations count which, when reached, can be mapped to raise Alarms/ Binary Outputs.

Function LED's

Eight (E10 case) or sixteen (E12) user programmable tricolour LED's are provided eliminating the need for expensive panel mounted pilot lights and associated wiring. Each LED can be user set to red, green or yellow allowing for clear indication of the associated function's state. A slip-in label pocket along-side enables the user to insert his own notation. A printer compatible template is available.

Function Keys

Twelve user programmable function keys are available for implementing User logic and scheme control functionality, eliminating the need for expensive panel mounted control switches and associated wiring. Each function key has an associated user programmable tri-color LED (red, green, yellow) allowing for clear indication of the associated function's state. A slip-in label pocket along-side enables the user to insert his own notation for the Function Key LED Identification.

Each Function Key can be mapped directly to any of the built-in Controller/Circuit Breaker Command functions or to the User Logic equations.

Fig 1. Tri-colour LED's and function keys

Data Acquisition -Via Communication Interface

Sequence of event records

Up to 5000 events are stored and time tagged to 1ms resolution.

Fault Records

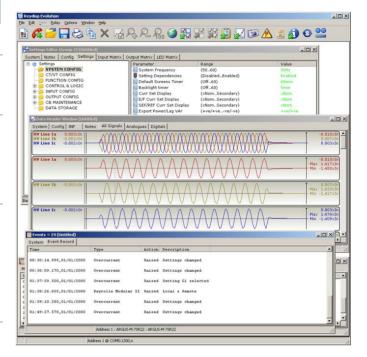
The last 10 fault records are displayed on the relay fascia and are also available through the communication interface, with time and date of trip, measured quantities and type of fault.

Waveform recorder

The waveform recorder stores analogue data for all poles and the states of protection functions, binary inputs, LEDs and binary outputs with user settable pre & post trigger data. A record can be triggered from protection function, binary input or via data communications. 10 records of 1 second duration are stored.

Demand Monitoring

A rolling record of demand over the last 24h is stored. The demand is averaged over a user selectable period of time. A rolling record of such demand averages is stored and provides the demand history. A typical application is to record 15min averages for the last 7 days.


Real Time Clock

The time and date can be set and are maintained while the relay is de-energised by a back up storage capacitor. The time can be synchronized from a binary input pulse or the data communication channel.

Data Log

The average values of voltages, current and real & reactive power are recorded at a user selectable interval and stored to provide data in the form of a Data Log which can be downloaded for further analysis. A typical application is to record 15 minute intervals over the last 7 days.

Reydisp Evolution

Fig 2. Typical Reydisp Evolution screenshot

Reydisp Evolution is common to the entire range of Reyrolle numeric products. It provides the means for the user to apply settings, interrogate settings and retrieve events and disturbance waveforms from the relays.

Technical Data

For full technical data refer to the Performance Specification Section of the Technical Manual.

Inputs and Outputs

Current Inputs

Quantity	3 x Phase & 1 x Earth or Sensitive Earth
Rated Current In	1/5A
Measuring Range	80 x ln
Instrumentation ≥ 0.1xIn	±1% In
Frequency	50/60Hz
Thermal Withstand:	
Continuous	3.0 x ln
10 Minutes	3.5 x ln
5 Minutes	4.0 x ln
3 Minutes	5.0 x ln
2 Minutes	6.0 x ln
3 Seconds	57.7A (1A) 202A (5A)
2 Seconds	70.7A (1A) 247A (5A)
1 Second	100A (1A) 350A (5A)
1 Cycle	700A (1A) 2500A (5A)
Burden @ In	≤0.1VA (1A phase and Earth element) ≤0.3VA (5A phase and earth element)

Voltage Inputs

Quantity	4
Nominal Voltage	40160V a.c. Range
Instrumentation ≥ 0.8xVn	±1% Vn
Thermal Withstand:	
Continuous	300V
1 Second	
Burden @ 110V	≤ 0.1 VA

DC Auxiliary supply

Nominal voltage 30/48/110/220/ V dc	Operating Range V dc Range 24 to 290 V dc
Allowable superimposed ac component	12% of DC voltage
Allowable breaks/dips in supply (collapse to zero)	20ms

Auxiliary supply: Burdens

Power Consumption	Quiescent (typical)	Quiescent (back- light)
30V dc	6.0W	7.0W
48V dc	5.50W	6.50W
110V dc	6.5W	7.5W
220V dc	7.5W	8.5W
110V dc	6.5W	7.5W

Binary Inputs

Operating Voltage	19V dc: Range 17 to 290V dc 88V: Range 74 to 290V dc
Maximum dc current for operation	1.5mA

Binary Outputs

Operating Voltage	Voltage Free	
Operating Mode	User selectable - Self or Hand Reset	
Contact Operate / Release Time.	7ms / 3ms	
Making Capacity:		
Carry continuously	5A ac or dc	
Make and carry	20A ac or dc for 0.5s	
(L/R \leq 40 ms and V \leq 300 V)	30A ac or dc for 0.2s	
Breaking Capacity		
$(\leq 5 \text{ A and } \leq 300 \text{ V})$:		
AC Resistive	1250 VA	
AC Inductive	250 VA at p.f. ≤ 0.4	
DC Resistive	75 W	
DC Inductive	30 W at L/R $\leq 40 \text{ms}$	
	50 W at L/R < 10ms	

Mechanical Tests

Vibration (Sinusoidal) IEC 60255-21-1 Class I

Туре	Level	Variation
Vibration response	0.5 gn	\leq 5 %
Vibration endurance	1.0 gn	\leq 5 %

Shock and Bump

IEC 60255-21-2 Class I

Туре	Level	Variation
Shock response	5 gn, 11 ms	\leq 5 %
Shock withstand	15 gn, 11 ms	\leq 5 %
Bump test	10 gn, 16 ms	\leq 5 %

Seismic

IEC 60255-21-3 Class I

Туре	Level	Variation
Seismic response	1 gn	≤ 5 %

Mechanical Classification

Durability

>10⁶ operations

Electrical Tests

Insulation

IEC 60255-5

Туре	Level
Between any terminal and earth	2.0 kV AC RMS for 1 min
Between independent circuits	2.0 kV AC RMS for 1 min
Across normally open contacts	1.0 kV AC RMS for 1 min

High Frequency Disturbance

IEC 60255-22-1 Class III

Туре	Level	Variation
Common (longitudinal)	2.5 kV	≤ 5 %
Series (transverse) mode	1.0 kV	≤ 5 %

Electrostatic Discharge

IEC 60255-22-2 Class IV

Туре	Level	Variation
Contact discharge	8.0 kV	≤ 5 %

Fast Transients

IEC 60255-22-4 Class IV

Туре	Level	Variation
5/50 ns 2.5 kHz	4kV	≤ 5 %
repetitive		

Surge Immunity

IEC 60255-22-5

Туре	Level	Variation
Between all terminals and earth	4.0 kV	\leq 10 % or 1mA
Between any two independent circuits	2.0kV	\leq 10 % or 1mA

Conducted Radio Frequency Interference

IEC 60255-22-6

Туре	Level	Variation
0.15 to 80 MHz	10 V	≤ 5 %

Radiated Radio Frequency

IEC 60255-25

Туре	Limits at 10 m, Quasi-peak
30 to 230 MHz	40 dB(µV/m)
230 to 10000 MHz	47 dB(μV/m)

Conducted Radio Frequency

Туре	Limits	
	Quasi-peak	Average
0.15 to 0.5 MHz	79 dB(μV)	66 dB(μV)
0.5 to 30 MHz	73 dB(μV)	60 dB(μV)

Radiated Immunity

IEC 60255-22-3 Class III

Туре	Level	Variation
80 MHz to 1000 MHz	10 V/m	$\leq 5 \%$

Magnetic Field with Power Frequency

IEC 61000-4-8, Class V

100 A/m continuous 1000 A/m for 3s

50Hz; 1.257mT

Climatic Tests

Temperature

IEC 60068-2-1/2

Operating Range	-10 °C to +55 °C
Storage range	-25 °C to +70 °C

Humidity

IEC 60068-2-78

```
Operational test 56 days at 40 °C and 93 % relative humidity
```

IP Ratings

IEC 60529

Туре	Level
Installed with cover	IP 50 from front
Installed with cover removed	IP 30 from front

For full technical data refer to the Performance Specification Section of the Technical Manual.

Performance

27/59 Under/Over Voltage

Number of Elements	4 Under or Over
Operate	Any phase or All phases
Voltage Guard	1,1.5200V
Setting Range Vs	5,5.5200V
Hysteresis Setting	0.0.180%
Vs Operate Level	100% Vs, ±1% or ±0.25V
Reset Level:	
Undervoltage	=(100%+hyst)xVop, ±1% or 0.25V
Overvoltage	=(100%-hyst)xVop, ±1% or 0.25V
Delay Setting td	0.00,0.0120,20.5100,10110
	00,101010000,1010014400s
Basic Operate Time :	
0 to 1.1xVs	73ms ±10ms
0 to 2.0xVs	63ms ±10ms
1.1 to 0.5xVs	58ms ±10ms
Operate time	Tbasic +td , ±1% or ±10ms
following delay.	
Inhibited by	Binary or Virtual Input
	VT Supervision
	Voltage Guard

47 Negative Phase Sequence

2
1,1.590V
0,0.180%
100% Vs, ±2% or ±0.5V
0.00,0.0120,20.5100,101 1000,101010000,10100144 00s
80ms ±20ms
55ms ±20ms
Tbasic +td , ±2% or ±20ms
< 40ms
Binary or Virtual Input

49 Thermal Overload

Operate levels	Operate and Alarm
Setting Range Is	0.10,0.113.0 x In
Operate Level	100% ls, ±5% or ±1%xln
Time Constant Setting	1,1.51000min
Operate time	$t = \tau \times In \left\{ \frac{I^2 - I_p^2}{I^2 - (k \times I_B)^2} \right\}$
	±5% absolute or ±100ms where
	lp = prior current
Alarm Level	Disabled, 50,51100%
Inhibited by	Binary or Virtual Input

37 Undercurrent

Number of Elements	2
Setting Range Is	0.05,0.105.0 x In
Operate Level	100% ls, ±5% or ±1%xln
Delay Setting td	0.00,0.0120,20.5100,101 1000,101010000,10100144 00s
Basic Operate Time:	
1.1 to 0.5 x ls	35ms ±10ms
Operate time following delay.	Tbasic +td , $\pm 1\%$ or $\pm 10ms$
Overshoot Time	< 40ms
Inhibited by	Binary or Virtual Input

46 Negative Phase Sequence Overcurrent

Number of Elements	DT & IT
DT Setting Range Is	0.05,0.105.0 x ln
DT Operate Level	100% ls, ±5% or ±1%xln
DT Delay Setting td	0.00,0.0120,20.5100,101 1000,101010000,10100144 00s
DT Basic Operate Time:	
0 to 2 x ls	40ms ±10ms
0 to 5 x ls	30ms ±10ms
DT Operate time following delay.	Tbasic +td , ±1% or ±10ms
IT Char Setting	IEC NI,VI,EI,LTI ANSI MI,VI,EI & DTL
IT Setting Range	0.052.5
Tm Time Multiplier	0.025,0.0501.6
Char Operate Level	105% ls, ±4% or ±1%ln
Overshoot Time	< 40ms
Inhibited by	Binary or Virtual Input

50 (67) Instantaneous & DTL OC&EF (Directional)

Operation	Non directional, Forward or reverse	
Elements	Phase and Measured Earth	
Number of Elements	4 x OC	
	4 x Measured EF 'G' where fitted	
	4 x SEF where fitted	
Setting Range Is	0.05,0.0650 x ln	
	SEF 0.0055 x In	
Time Delay	0.0014400s	
2		
Operate Level	100% ls, ±5% or ±1%xln	
Operate time:		
50	0 to 2xls – 35ms, ±10ms,	
50		
	0 to 5xls – 25ms, ±10ms	
Operate time following	Tbasic +td , ±1% or ±10ms	
delay		
Inhibited by	Binary or Virtual Input	
initialized by	Inrush detector	
	infush delector	
	VT Supervision	

51(67) Time Delayed OC&EF (Directional)

Elements	Phase, Measured Earth & SEF	
Number of Elements	4 x OC	
	4 x Measured EF 'G'	
	4 x SEF	
Operation	Non directional, Forward or	
	reverse	
Characteristic	IEC NI, VI, EI, LTI ANSI MI, VI, EI &	
	DTL & Legacy (101 etc.)	
Setting Range Is	0.05,0.12.5 x ln	
	SEF 0.0051 x ln	
Time Multiplier	0.025,0.051.6	
Time Delay	0,0.01 20s	
Operate Level	105% ls, ±4% or ±1%xln	
Minimum Operate time	$t_{op} = \frac{K}{\left[\frac{L}{2}\right]^{\alpha} - 1} \times Tm$	
IEC	$\int dp \left[\frac{I}{Is} \right]^{\alpha} - 1$	
	$t_{op} = \left[\frac{A}{\left[\bot\right]^{p} - 1} + B\right] \times Tm$	
ANSI	$\int \left[\frac{I}{I_s} \right]^p - 1 \int \left[$	
	\pm 5 % absolute or \pm 30 ms	
Follower Delay		
Reset		
	ANSI decaying, 0 – 60s	
Inhibited by	Binary or Virtual Input Inrush detector	
	VT Supervision	

59N Neutral Voltage Displacement

Number of Elements	1xDT & 1xIT
DT Setting Range Is	1100V
DT Operate Level	100% Vs, ±5% or ±1%xVn
DT Delay Setting td	014400s
DT Basic Operate Time	76ms ±20ms
OV to 1.5xVs	
DT Operate time	Tbasic +td , $\pm 1\%$ or ± 20 ms
following delay.	
IT Setting Range	1100V
TM Time	0.1140
Multiplier(IDMT)	
Delay (DTL)	020s
Reset	0 60s, ANSI decaying
Char Operate Level	105% Vs, ±2% or ±0.5V
Inhibited by	Binary or Virtual Input

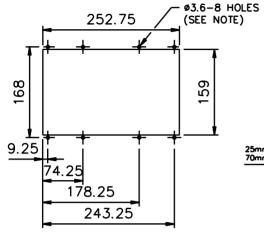
60 Supervision

CT	Vnps & Inps
VT	nps/zps

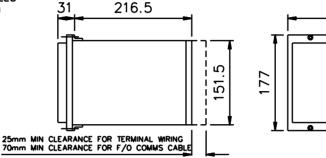
64H Restricted Earth Fault

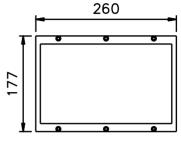
Setting Range	0.0050.95xln
Operate Level	100% ls, ±5% or ±1%xln
Time Delay	0.00 14400s
Basic Operate Time	0 to 2 xls 45ms ±10ms
	0 to 5 xls 35ms ±10ms
Inhibited by	Binary or Virtual Input

51V Voltage Controlled Overcurrent


Setting Range	5,5.5200V
Operate Level	100% Vs, ±5% or ±1%xVn
Multiplier	0.25.0.31 x ls(51)
Inhibited by	VT Supervision

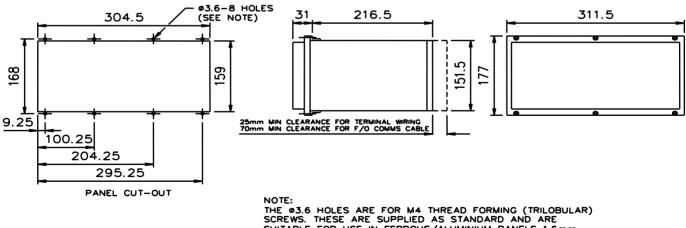
50BF Circuit Breaker Fail


Operation	Current check - Phase and Measured Earth with independent settings Mechanical Trip CB Faulty Monitor
Setting Range Is	0.05,0.0552.0 x In
2 Stage Time Delays	Timer 1 2060000ms Timer 2 2060000ms
Operate Level	100% ls, ±5% or ±1%xln
Basic Operate time	< 20ms
Operate time following delay	Tdelay ±1% or ±10ms
Triggered by	Any function mapped as trip contact.
Inhibited by	Binary/Virtual Input
Timer By pass	Yes, 50BF CB Faulty Input



Case Dimensions

PANEL CUT-OUT



NOTE:

THE Ø3.6 HOLES ARE FOR M4 THREAD FORMING (TRILOBULAR) SCREWS. THESE ARE SUPPLIED AS STANDARD AND ARE SUITABLE FOR USE IN FERROUS/ALUMINIUM PANELS 1.6mm THICK AND ABOVE. FOR OTHER PANELS, HOLES TO BE M4 CLEARANCE (TYPICALLY Ø4.5) AND RELAYS MOUNTED USING M4 MACHINE SCREWS, NUTS AND LOCKWASHERS (SUPPLIED IN PANEL FIXING KIT).

Fig 3. E10 Case

NOTE: THE Ø3.6 HOLES ARE FOR M4 THREAD FORMING (TRILOBULAR) SCREWS. THESE ARE SUPPLIED AS STANDARD AND ARE SUITABLE FOR USE IN FERROUS/ALUMINIUM PANELS 1.6mm THICK AND ABOVE. FOR OTHER PANELS, HOLES TO BE M4 CLEARANCE (TYPICALLY Ø4.5) AND RELAYS MOUNTED USING M4 MACHINE SCREWS, NUTS AND LOCKWASHERS (SUPPLIED IN PANEL FIXING KIT).

Fig 4. E12 Case

7SR224 Connection Diagram

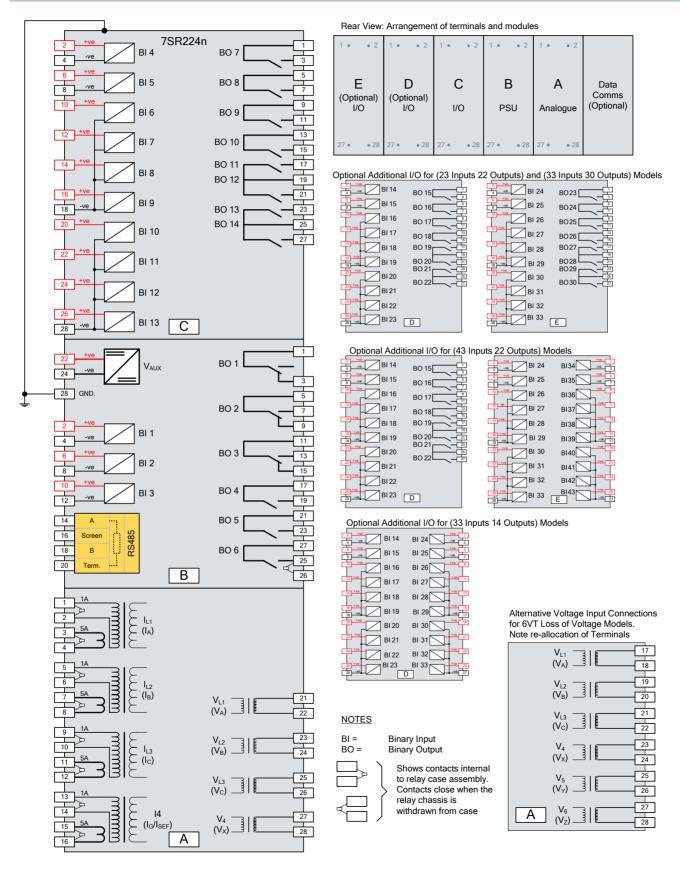


Fig 5. 7SR224 Wiring Diagram

7SR224 Interface Diagram

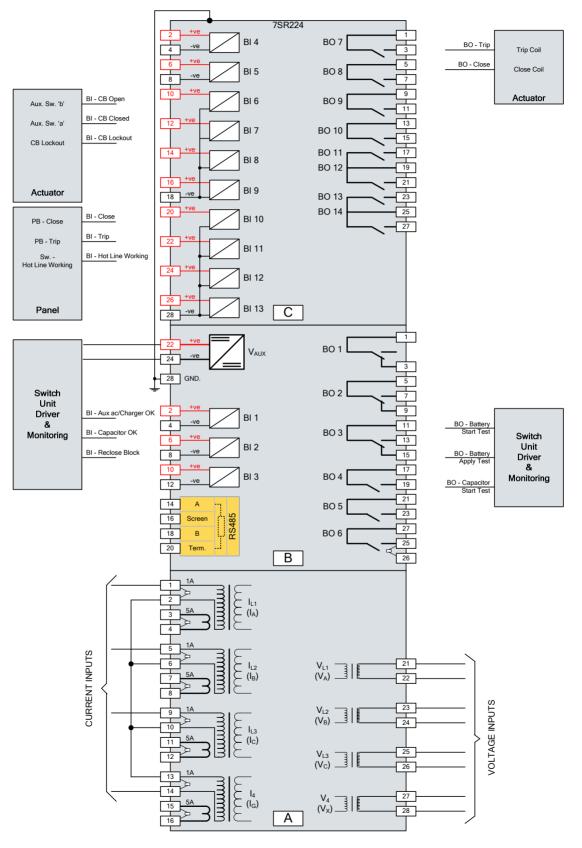


Fig 6. 7SR224 Interface Diagram

Function Diagram for 7SR224 Recloser Controller

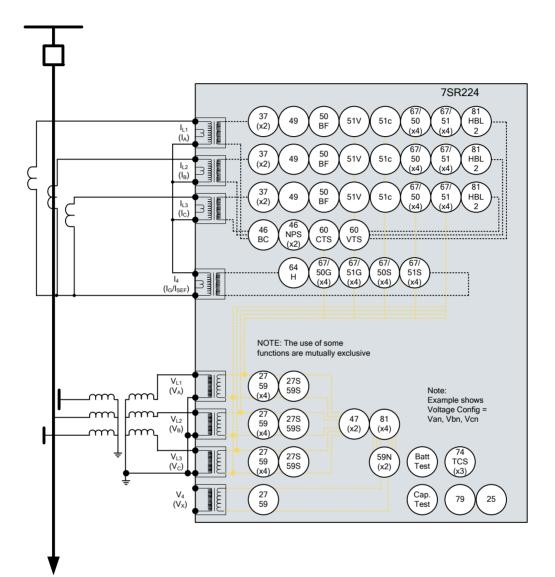


Fig 7. 7SR224 Function Diagram

Ordering Information – 7SR224 Argus Recloser Controller

Product description	Variants	Orde	r No.			
Directional O/C Rela	у		7 S R 2 2	4 🗆 - 2 🗆		0
Recloser			Î	ÎÎÎÎ		ÎÎÎ
Protection Overcurren	<u>Product</u> nt – Directional		2			
<u>Relay Type</u> Recloser				4		
<u>Case I/O an</u> E10 case, 4	<u>nd Fascia ¹⁾</u> 4 CT, 6 VT, 13 Binary Inputs / 14 Binar	y Outputs, 8 LEDs + 12 keys				 D A
E10 case, 4	4 CT, 4VT, 13 Binary Inputs / 14 Binary	/ Outputs, 8 LEDs + 12 keys		2		
E10 case, 4	4 CT, 4VT, 23 Binary Inputs / 22 Binary	/ Outputs, 8 LEDs + 12 Keys		3		c
E10 case, 4	4 CT, 4 VT, 33 Binary Inputs / 14 Binar	y Outputs, 8 LEDs + 12 keys		4		 C
E10 case, 4	4 CT, 6 VT, 23 Binary Inputs / 22 Binar	y Outputs, 8 LEDs + 12 keys		5		ĎÁ
E12 case, 4	4 CT, 4 VT, 33 Binary Inputs / 14 Binar	y Outputs, 16 LEDs + 12 keys	i	6		
E12 case, 4	4 CT, 4 VT, 33 Binary Inputs / 30 Binar	y Outputs, 16 LEDs + 12 keys	i	7		EÁ CI EA
E12 case, 4	4 CT, 4 VT, 43 Binary Inputs / 22 Binar	y Outputs, 16 LEDs + 12 keys	;	8		
<u>Measuring</u> 1/5 A, 63.5				2		
<u>Auxiliary vo</u> 30 to 220V	<u>oltage</u> / DC, binary input threshold 19V DC 2	22W		A A		
30 to 220V	/ DC, binary input threshold 88V DC 2	22W		B	3 1 1 1	
Region Wo Region Wo	ecific functions orld, 50/60Hz, language English, Reyrc orld, 50/60Hz, language English, Siem A, 60/50Hz, language English - US (A	ens fascia	Siemens		A B C	
Standard vo Standard vo Standard vo	<u>ation Interface</u> rersion - included in all models, USB fr rersion - plus additional rear F/O ST co rersion – plus additional rear RS485 ar rersion – plus additional rear RS232 ar	nnectors (x2) and IRIG-B nd IRIG-B			1 2 3 4	
IEC 60870-	-5-103 -5-103 and Modbus RTU (user selectal -5-103 and Modbus RTU and DNP 3.0 (-5-103 and Modbus RTU and IEC 6087	(user selectable setting)	ing)	(continued	0 1 2 3 on followin	q page)

SIEMENS siemens-russia.com

Ordering Information – 7SR224 Argus Recloser Controller

Product description Variants

Order No.

Direction	al O/C Relay		7 S R 2 2 4 🗆 - 2 🗆 A 🗆 🗆 - 0 🗖 🗖	
(continued	from previous	page)	ÎÎÎ	
		unction Packages		
	Standard ver	sion – Included in all models	ċ	
	27/59	Under/overvoltage		
	27/59	Under/overvoltage, Sag/swell		
	37	Undercurrent		
	46BC	Broken conductor/load unbalance		
	46NPS	Negative phase sequence overcurrent		
	49	Thermal overload		
	50BF	Circuit breaker fail		
	51V	Voltage controlled overcurrent		
	59N	Neutral voltage displacement		
	60CTS	CT supervision		
	60VTS	VT supervision		
	67/50	Directional instantaneous phase fault overcurrent		
	67/50G	Directional Instantaneous earth fault		
	67/51	Directional Time delayed phase fault overcurrent		
	67/51G	Directional Time delayed earth fault		
	67/50SEF	Directional instantaneous sensitive earth fault		
	67/51SEF	Directional time delayed sensitive earth fault		
	74TC	Trip circuit supervision		
	74BF	Circuit breaker close fail		
	79	Autoreclose		
	81	Under/overfrequency	111	
	81HBL2	Inrush restraint		
	86	Lockout		
	00	Battery and capacitor		
		Cold load pickup		
		Programmable		
		Tiogrammable		
	Standard ver		DA	
	27/59	Under/overvoltage		
	60VTS	VT Supervision		
		Loop automation by loss of voltage		
	Standard ver		EĄ	
		Single/triple pole autoreclose		
	Additional Fu	Inctionality		
		al Functionality	Å	
	Synchronisin		C D	
	Synchronisin	3		
	Settings File			
		tings and standard labels for Siemens Recloser	l	
	Stanuard Set	ungs and standed labers for stelliens recloser	0	

Published by and copyright © 2010: Siemens AG Energy Sector Freyeslebenstrasse 1 91058 Erlangen, Germany

Siemens Protection Devices Limited P.O. Box 8 North Farm Road Hebburn Tyne & Wear NE31 1TZ United Kingdom Phone: +44 (0)191 401 7901 Fax: +44 (0)191 401 5575 www.siemens.com/energy

For more information, please contact our Customer Support Center. Phone: +49 180/524 70 00 Fax: +49 180/524 24 71(Charges depending on provider) E-mail: support.energy@siemens.com

Power Distribution Division Order No. E53000-K7076-C35-3 Printed in Fürth

Printed on elementary chlorine-free bleached paper. All rights reserved. Trademarks mentioned in this document are the property of Siemens AG, its affiliates, or their respective owners. Subject to change without prior notice. The information in this document contains general descriptions of the technical options available, which may not apply in all cases. The required technical options should therefore be specified in the contract.

